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Abstract (not a viewgraph) 
 
 

Given a set of simulated gamma-ray leakage measurements and the 
unknown object model that best fit these measurements, standard tools of 
uncertainty quantification in data-fitting were applied to develop an estimate 
of the uncertainty of the dimensions in the model based on the statistical 
uncertainty of the measurements.  At least two issues were discovered that 
need further exploration.  One is that in standard data analysis, there are 
usually many more data points than there are model parameters to be fit, so 
that calculating the inverse of the Hessian (or curvature) matrix to obtain the 
covariance matrix is straightforward; in Homeland Security applications, 
however, there are more unknowns than data points, and it is not obvious 
how the correct covariance matrix should be obtained if the Hessian matrix 
is singular.  Thus, in most problems of interest, it is still unclear how to 
relate the uncertainty in measurements to the uncertainty in model 
dimensions.  A related issue is how the uncertainty in model dimensions 
should be used to obtain the uncertainty in other model quantities, such as 
material masses.  The standard procedure is to use the variances and 
covariances of the dimensions in the simple error propagation formula; an 
alternative is to randomly sample the model dimensions from Gaussian 
distributions whose widths are related to the uncertainty in the dimensions, 
compute the associated masses, and then fit the mass distributions to 
Gaussians whose widths are related to the uncertainty in the masses.  Both of 
these procedures require knowledge of the covariance matrix for the model 
dimensions.   

Thus, a program to extend the standard methods of uncertainty 
quantification to develop an estimate of the covariance matrix in the case of 
a singular Hessian matrix would be of interest for Homeland Security 
applications.   
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Motivation 
 
 
• Consider a border portal monitor (radiation detector) that “sees” a 
radioactive object.  We want to use the data from the monitor to tell us how 
much radioactivity there is, with uncertainties. 
 
We will start with an easier problem: 
 
• Consider a radioactive object emitting γ rays of discrete energies that 
are well resolved using high-purity germanium (HPGe) detectors 
 
• We want to use γ leakage measurements to tell us what the system is 
 

 
 
 
 
 
 
 
 
 
 
 
 

Shield materials 
(?) 

Source 
(?) Detector 

Shield and source interfaces
(?)  

 
• Notation:  
 

=g
oM  measured leakage for γ line g (g = 1,…,G) 
=g

oσ  statistical uncertainty of  g
oM

=gM  calculated leakage for γ line g (g = 1,…,G) for some model 
model = a description of the system (materials, masses, interface 
locations, etc.), NOT a description of the γ transport process 
 

• We assume that there is a single number (the γ leakage) associated with 
a single energy line 
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Notation 
 
 
• We consider only the transport of photons of discrete energies and 
assume that any scattered photons lose energy and are removed.  The angular 
flux of photons at the discrete energy denoted by index g is given by  

r
)()ˆ,()()ˆ,(ˆ rqrrr ggg

t
g =Σ+∇⋅ ΩΩΩ ψψ  

for .,,1 Gg K=   (This equation represents the forward problem.) 
 
• The adjoint equation is 

r
,)()ˆ,()()ˆ,(ˆ *** rqrrr ggg

t
g =Σ+∇⋅− ΩΩΩ ψψ  

where the source is actually the detector response function.   
 
• These equations can be rendered in operator notation as  

ggg qL =ψ  
and  

.*** ggg qL =ψ  
 
• Suppose the scalar flux for each energy line g is measured at a detector.  
The quantity of interest is 

,)ˆ,()(ˆ∫∫ Σ= ΩΩ rrddVM gg
d

g ψ  

where the detector response function Σ  is zero outside the detector 
volume.  

)(rg
d

 
• Introducing the inner product notation ⋅  to mean an integral over all 
phase space (volume and angle), the quantity of interest is  

.gg
d

gM ψΣ=  

A weight function or detector efficiency can be built into . )(rg
dΣ
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Strategies for optimization 
 
 
• Jeffrey A. Favorite, “Using the Schwinger Variational Functional for 
the Solution of Inverse Transport Problems,” Nucl. Sci. Eng., 146, to appear 
(January 2004). 
 

+ The Schwinger method is iterative (i.e. implicit) but based on 
algebraic manipulations of the transport equation (i.e. explicit) 

 
+ The method updates the unknown interface locations using 

,g
o

g
o

g

M
MMrR −

=∆  

where r∆  is an N × 1 vector and R  is a G × N matrix. 
 
• Search schemes: Variational perturbation theory (Favorite) and a 
geometry-based scheme due to Diane Vaughan and Kevin Buescher (X-8) 
 
• A derivative-based scheme [J. A. Favorite and R. Sanchez, “An Inverse 
Method for Radiation Transport,” submitted to the 10th Int. Conf. Radiation 
Shielding/Radiation Protection and Shielding 2004, Funchal, Portugal, May 
9–14 (2004)] 
 

+ It can be shown that 

,)()(ˆ)(ˆ *
,

* ∫∫ ∆Σ−∆=
∂
∂

n
g

n
gg

ntn
gg

n
n

g

rrdrdq
r

M ψψψ ΩΩ  

where  and ∆Σ  are the source and cross section differences 
across interface  

g
nq∆ g

nt ,

nr

+ If, for each line, 
2

2
1








 −
≡ g

o

g
o

g
g MM

σ
ε , then 

( )
( ) n

g

g
o

g
o

g

n

g

r
MMM

r ∂
∂−

=
∂
∂

2
σ

ε  

 
+ No numerical differentiation is required 
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Chi-squared and the covariance matrix 
 
 
• : 2χ

∑
=








 −
=

G

g
g
o

g
o

g MM
1

2
2

σ
χ  

 
•  gradient vector: 2χ

( ) n

gG

g
g
o

g
o

g

n r
MMM

r ∂
∂−

=
∂
∂ ∑

=1
2

2

2
σ

χ  

 
• Hessian (curvature) matrix of : 2χ

( ) ( )

( )∑

∑

=

=

∂
∂

∂
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≈


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∂
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22

12
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• Define the α matrix to be ½ the Hessian matrix of  (Press et al. call 
this the curvature in Chap. 15): 

2χ

[ ]
( )∑

= ∂
∂

∂
∂

=
G

g n

g

m

g

g
o

nm r
M

r
M

1
2

1
σ

α  

 
• The covariance matrix of uncertainties in the estimated values of the 
interface locations is the inverse of α (the curvature?): 

















=

= −

22

22

1

1

11

NN

N

rrr

rrr

C

σσ

σσ

α

L

MOM

L
 

 
• What if the Hessian is singular? 
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Relating uncertainty in interface locations to uncertainty in mass (1) 
 
 
• Consider, for convenience, a spherically symmetric system 

 
 
 
 
 
 
 
 
 
 
 

g
t 3,Σ′ g

t 4,Σ′ g
t 5,Σ′ g

t 6,Σ′

3r 4r
5r 6r−5r +5r

g
t −∆Σ 5,

g
t +∆Σ 5,

1r 2r

g
t 1,Σ′ g

t 2,Σ′
Detector 

Source 

 
 
• What’s the uncertainty in the mass of region n? 

( )3
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3

3
4

−−= nnnn rrm ρπ  

 
• Standard formula for propagation of errors: 
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Relating uncertainty in interface locations to uncertainty in mass (2) 
 
 
• Use the covariance matrix to randomly sample interface locations  
and  from Gaussian distributions with the proper widths 

nr
1−nr

 
• Use these to compute masses 
 
• The masses should be distributed in a Gaussian whose width is 

nmσ  
 
• What is the proper distribution for the interface locations? 

,2
1

ξCr =∆  
where ξ  represents N independent random numbers drawn from a Gaussian 
distribution with mean 0 and half-width 1 
 
• What is the square root of the covariance matrix?  Use singular value 
decomposition (SVD) on the Hessian: 

,TVWU=α  

where 















=

Nw

w

00
00
001

OW  is the diagonal matrix of singular values.  Now 

T

n
UwVC 



== − 1diag1α  

and 
T

n
U

w
VC 








= 1diag2

1

 

 
• If α  is not singular then VU = ; if α  is singular then V≠U   
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Relating uncertainty in interface locations to uncertainty in leakage 
 
 
• Use the covariance matrix to randomly sample interface locations  
and  from Gaussian distributions with the proper widths 

nr
1−nr

 
• Use these to compute leakage, gM   
 
• The leakages should be distributed in a Gaussian whose width is  g

oσ
 
 
OR 
 
 
• Use the standard formula for propagation of errors: 

( ) ∑∑∑
> ∂

∂
∂
∂

+







∂
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=
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rr
m
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n

g

n
r
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g
g

mnn r
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r
M

r
M 22

2
2 2 σσσ  

 
• gσ  should equal  g

oσ
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Test problem 
 
 

AluminumLead VoidGodiva

• Godiva (HEU) model: 
 
• Spherical 
 
• There are four uranium 

γ lines, but only three can 
escape this model 

 
8.741 12.4 12.9 13.2  

• γ leakage from a Monte Carlo calculation: 
Energy 
(keV) 

γ leakage (s–1) 
and 1σ uncertainty 

144 Not observed 
186 5.28 × 103 ± 40.82% 
766 2.50 × 103 ± 0.41% 

1001 1.01 × 104 ± 0.33% 
 
• A one-dimensional deterministic SN code, PARTISN, was used in the 
optimization process 
 

+ S32 
 
+ No scattering 
 
+ Discrete-energy total cross sections from the Monte Carlo library 

 
• The optimization details are interesting but not important here; assume 
that I’ve found the minimum  for each case 2χ
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Test problem 
 
 

Estimating gσ  for the line leakages 
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Test problem 1: Two shield unknowns  
 
 

m 

• Godiva model: 
 
• The assumed r1 and r4 
were not correct; this made  
little difference 
 
 
 :  12.9
 : 12.727 
 
• Standard deviation in line leakages (expressed as relativ

Line 
(keV) 

 
g
oσ  

gσ  from  
error prop. 

gσ  from  
Gauss. fit 

186 0.408 0.316 0.299 
766 0.0041 0.0034 0.0032 
1001 0.0033 0.0028 0.0027 

gσ  from error propagation and Gaussian fit are similar but sm
 
• 186-keV line fit     1001-keV line fi
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Test problem 2: One shield, one source unknown 
 
 

Aluminum

 12.9  

Lead VoidGodiva

• Godiva model: 
 
 
 
 
 
 
 :
 
 
• Standard deviation in line leak

Line 
(keV) 

 
g
oσ  

σ
e

186 0.408 0
766 0.0041 0
1001 0.0033 0

gσ  from error propagation and Gau
 
• 186-keV line fit    
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Test problem 3: All four radii unknown 
 
 

AluminumGodiva

13.2 12.98.741 12.4

Lead Void

• Godiva model: 
 
• Note:  The Hessian 
is singular for this problem. 
 
 
 
 Actual:

• Nevertheless, … Assumed: 8.7042 12.237 12.727 13.070 

 
• Standard deviation in line leakages (expressed as relative errors): 

Line 
(keV) 

 
g
oσ  

gσ  from  
error prop. 

gσ  from  
Gauss. fit 

186 0.408 0.408 0.296 
766 0.0041 0.0041 0.0036 
1001 0.0033 0.0033 0.0033 

gσ  from error propagation is correct!  gσ  from Gaussian fit is smaller than 
. g

oσ
 
• 186-keV line fit     1001-keV line fit 
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Test problem 
 
 

Estimating mσ  for material masses 
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Test problem 1: Two shield unknowns  
 
 

m 

• Godiva model: 
 
 
 
 
 
 
 :  12.9
 : 12.727 
 
• Mass and standard deviation (from the error propagatio

Shell Mass (kg) mσ  (kg) 
Lead 10.950 0.797 
Al 1.941 0.693 

 
• Mass and standard deviation (from Gaussian fit): 

Shell Mass (kg) mσ  (kg) 
Lead 10.963 0.783 
Al 1.931 0.683 

 
• Error propagation formula and Gaussian fit yield simila
 
• Lead shell fit      Aluminum
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Test problem 2: One shield, one source unknown 
 
 

m 

• Godiva model: 
 
 
 
 
 
 
 :  12.9
 : 12.896 
 
• Mass and standard deviation (from the error propagatio

Shell Mass (kg) mσ  (kg) 
Godiva 51.303 1.132 
Lead 11.358 0.388 
Al 1.759 0.092 

 
• Mass and standard deviation (from Gaussian fit): 

Shell Mass (kg) mσ  (kg) 
Godiva 51.316 1.125 
Lead 11.361 0.382 
Al 1.758 0.091 

• Error propagation formula and Gaussian fit yield simila
 
• Godiva fit      Lead shell fit 
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Test problem 3: All four radii unknown (1) 
 
 

mm  

• Godiva model: 
 
• Note:  The Hessian  
is singular for this problem. 
 
 
 
 Actual: 8.741 12.4 12.9 13.
 Assumed: 8.7042 12.237 12.727 1
 
• Mass and standard deviation (from the error propagatio

Shell Mass (kg) mσ  (kg) 
Godiva 51.765 3.543 
Lead 10.951 1.043 
Al 1.936 2.004 

 
• Mass and standard deviation (from Gaussian fit): 

Shell Mass (kg) mσ  (kg) 
Godiva 52.839 2.698 
Lead 10.637 0.782 
Al 1.966 2.007 

• Which mσ  is correct?  (Recall that err. prop. gave corre
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Test problem 3: All four radii unknown (2) 
 
 
• Godiva model: 
 
• Note:  The Hessian  
is singular for this problem. 
 
 
 
 
 
 
• Mass and standard deviation (from the error propagatio

Shell Mass (kg) mσ  (kg) 
Godiva 51.765 3.543 
Lead 10.951 1.043 
Al 1.936 2.004 

• Gaussian fit:      Gaussian fit with
 
 
 
 
 

Shell Mass (kg) mσ  (kg) 
Godiva 52.839 2.698 
Lead 10.637 0.782 
Al 1.966 2.007 

Shell Mass
Godiva 51.76
Lead 10.95
Al 1.936

Assumed:
Actual:

112.727 12.2378.7042
13.12.912.48.741 

mm  

• The fit should be two-sided. 
 
• Godiva fit       Lead shell 
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 mean fixed: 
 (kg) mσ  (kg) 
5 2.264 
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2 

fit 

10000 11000 12000 13000

17 of 18 



Summary and conclusions 
 
 
• We have just begun to apply standard methods of uncertainty 
quantification to problems of concern to Homeland Security 
 
• The work presented here was performed on a very small budget in 
order to understand the standard methods  
 
• Numerical tests were run on a problem of interest, but this problem is 
much easier than the general portal monitor problem 
 
• Areas in need of further research have been identified 
 

+ For mσ  (statistical uncertainty in estimated mass), which is 
correct: the error propagation formula or Gaussian sampling of the 
unknown radii? 
 
+ Why is gσ  (statistical uncertainty in line leakage estimated using 
covariance matrix of unknown radii) accurately calculated from the 
error propagation formula when the Hessian is singular, but not when 
the Hessian is not singular? 
 
+ Why is gσ  not accurately calculated from Gaussian sampling of 
the unknown radii? 
 
+ What are the implications of using SVD to invert a singular 
Hessian?  

 
• Can these methods be applied to the more general portal monitor 
problem?  (What does it mean to minimize  in such problems?) 2χ
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